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Abstract— Active worms spread in an automated fashion and
can flood the Internetin a very short time. Modeling the spread of
active worms can help us understand how active worms spread,
and how we can monitor and defend against the propagation
of worms effectively. In this paper, we presenta mathematical
model, referred to as the Analytical Active Worm Propagation
(AAWP) model, which characterizes the propagation of worms
that employ random scanning We compare our model with the
Epidemiological model and Weaver's simulator. Our results show
that our model can characterize the spread of worms effectively.
Taking the Code Red v2 worm as an example, we give a quan-
titati ve analysis for monitoring, detecting and defending against
worms. Furthermor e, we extend our AAWP model to understand
the spread of worms that employ local subnet scanning To the
bestof our knowledge,there is no model for the spread of a worm
that employs the localized scanning strategy and we believe that
this is the first attempt on understanding local subnet scanning
quantitati vely.

Index Terms— security, worm, modeling

I. INTRODUCTION

Active worms have beena persistentsecurity threaton the
Internetsincethe Morris worm arosein 1988. The Code Red
and Nimda worms infectedhundredsof thousandf systems,
and costboth the public and private sectorsmillions of dollars
[11, [2], [3], [4]. Active wormspropagatéyy infectingcomputer
systemsand by usinginfectedcomputergo spreadthe worms
in anautomatedashion.Stanifordet al. shov thatactve worms
can potentially spreadacrossthe Internetwithin secondg5].
It is thereforeof greatimportanceto characterizeand monitor
the spreadof active worms, and be able to derive methodsto
effectively defendour systemsagainstthem.

About ten yearsago, Kephartand White presentedhe Epi-
demiologicalmodel to understandand control the prevalence
of viruses[6], [7], [8]. This modelis basedon biological epi-
demiologyandusesnonlineardifferential equationsto provide
a qualitatve understandingf virus spreading White pointed
out, however, that the “mystery” of the Epidemiologicalmodel
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is thatit fails to predictthatvirtually mostviruseswill be slow
in global prevalence[9].

In this paper we presenta model, referred to as the
Analytical Active Worm Propagation(AAWP) model, which
characterizeghe propagationof worms that employ random
scanning.We take adwantageof a discretetime model and
deterministicapproximationto describethe spreadof active
worms. Our model capturesthe characteristicof the spread
of active wormsand explainsthe aforementionedmystery” to
someextent. In orderto evaluateour model, we compareit to
the simulatorin [10]. Experimentakesultsshav thatour model
can effectively characterizehe propagationof worms.

In additionto modelingthe spreadof worms,we attemptto
answerthe following questions:

« How can we monitor the spreadof actve worms ac-
curately? When the Code Red v2 worm broke out on
July 19th, 2001, CAIDA usedone /8 network and two
/16 networks to monitor the spread[11]. It is not clear
however, whetherthe datacollectedfrom thesenetworks
canreflectthe actualspreadof the worm. If the datadoes
not reflectthe actualspreadof the worm, whatis the size
of the network that shouldbe usedto monitor the infected
machinesur resultsshov that monitoringa /8 network
is sufficient for characterizinghe spreadof active worms
accurately

« How canwe detectthe spreadof active wormsin atimely
fashion?To the bestof our knowledge,no effective worm
detectionmechanismis available. One simple detection
systemusesunusedIP addresse$o detectthe scansfrom
active worms. With the help of the AAWP model, we
derive the numberof IP addresseaeededor detectingthe
spreadof active worms effectively. Although this simple
detectionsystemmight generatefalse alarms,we believe
thatit is the first stepin understandinghe effectiveness
of the detectionsystemquantitatvely.

« How can we defendagainstthe spreadof active worms
effectively? We perform a study on how well a worm
defendingtool can slon down the propagationof worms
basedon our model. Our study quantitatvely illustrates
the size of addresspaceneededo stopor slow down the
CodeRed V2 like worms effectively.

Furthermore developing an analyticalmodel for the spread



of a worm emplgying a localized scanningstratey is sig-
nificantly more difficult than that for random scanning|[5].
We extend the AAWP model to characterizethe spreadof
a worm that employs the localized scanningstratgy, which
is used by the Code Red Il and Nimda worms. Our model
shaws that worms that employ localized scanningspreadat a
slower rate thanthoseemploying randomscanningdespitethe
fact that localized scanningcan potentially penetratebeyond
firewalls. To the bestof our knowledge,this is the first attempt
in understandinghelocal subnetscanningpolicy quantitatiely.

The remainderof this paperis structuredasfollows. Section
Il describeshow active worms spread, and introduces the
parametergor characterizingheir propagationln Sectionlll,
we presenthe AAWP model,andcompareit to the Epidemio-
logical modeland Weaver’s simulator In addition, we usethe
AAWP modelto simulatethe spreacof the CodeRedv2 worm.
SectionlV outlinestheapplicationsof the AAWP model,which
include verifying the correctnessof the worm’s monitoring
data,developinga detectionsystemand evaluatingthe LaBrea
defensesystem.In SectionV, we extendthe AAWP modelto
worms that employ local subnetscanning.We concludethis
paperin SectionVI with a brief summaryand an outline of
our future work.

Il. SPREAD OF ACTIVE WORMS

In this section,we first describehow active worms spread,
then introduce the parametersusedin the spreadof actve
worms.Finally, we presentwo worm scanningnodels:random
scanningand local subnetscanning.

Whenan active worm is fired into the Internet,it simultane-
ously scansmary machinesn an attemptto find a vulnerable
machineto infect. Whenit finally finds its prey, it sendsout
a probeto infect the target. If successfula copy of this worm
is transferredto this new host. This newvw host then begins
runningthe worm andtries to infect other machineswWhenan
invulnerablemachineor an unusedIP addresss reachedthe
worm posesno threat. During the worm’s spreadingprocess,
some machinesmight stop functioning properly forcing the
usersto reboot thesecomputersor at leastkill some of the
processeghat may have beenexploited by the worm. Then
theseinfected machinesbecomevulnerable machinesagain,
and are still inclined to further infection. When the worm is
detected peoplewill try to slow it down or stopit. A patch,
which repairsthe security hole of the machines,is usedto
defendagainstworms.Whenaninfectedor vulnerablemachine
is patched,t becomesan invulnerablemachine.

To speedup the spreadof active worms, Weaver presented
the “hitlist” idea [10]. Long before an attacler releasesthe
worm, he/shegathersa list of potentially vulnerablemachines
with good network connectionsAfter the worm hasbeenfired
onto an initial machineon this list, it begins scanningdown
thelist. Hence,the worm will first startinfecting the machines
on this list. Oncethis list hasbeenexhausted the worm will
then start infecting other vulnerablemachines.The machines
onthislist arereferredto asthe“hitlist”. After theworm infects

the hitlist rapidly, it usestheseinfectedmachinesas“stepping
stones”to searchfor other vulnerablemachineslin this paper
we do not considerthe amountof time it takesa worm to infect
the hitlist sincethe hitlist canbe acquiredwell beforea worm
is releasecandbe infectedin a very shortperiodof time. Table
| shaws the parameterénvolvedin the spreadof active worms.

Thereare several different scanningmechanismghat active
worms emplgy, such as random, local subnet, permutation
and topological scanning[5]. In this paperwe focus on two
mechanismsrandom scanningand local subnetscanning.In
random scanning,it is assumedthat every computerin the
Internet is just as likely to infect or be infected by other
computersSucha network canbe picturedasa fully-connected
graphin which the nodesrepresentcomputersand the arcs
representonnectiongneighboring-relationshig) betweerpairs
of nodes.This topology is called “homogeneousanixing” in
the theoreticalepidemiology[7]. Our AAWP modelis usedto
modelrandomscans.n local subnetscanning computersalso
connecto eachotherdirectly, forming “homogeneousnixing”.
However, instead of selecting targets randomly the worms
preferentiallyscanfor hostson the “local” addressspace.For
example the Nimdaworm selectdarget|P addresseasfollows
[3]:

« 50% of thetime, an addreswith the samefirst two octets

will be chosen.
« 25% of the time, an addresswith the samefirst octetwill
be chosen.
o 25% of the time, a randomaddresswill be chosen.

We will extend the AAWP model to the Local AAWP
(LAAWP) model in SectionV to understandhe function of
the propagationparametersand analyzethe spreadof active
wormsthat employ local subnetscanning.

I1l. MODELING THE SPREAD OF ACTIVE WORMS THAT
EMPLOY RANDOM SCANNING

To understandthe characteristicsof the spreadof active
worms that emplgy randomscanning,we develop the AAWP
model, which uses the discrete time and continuous state
deterministic approximationmodel. In this section, we first
describethe AAWP model in detail, then compareit to the
Epidemiologicalmodel and Weaver’s simulator finally use it
to simulatethe Code Redv2 worm.

A. DeterministicApproximationModeling

We assumethat worms can simultaneouslyscanmary ma-
chinesandwill notre-infecta machinethatis alreadyinfected.
We also assumethat the machineson the hitlist are already
infected at the start of the worm’s propagation.Supposethat
an active worm takesonetime tick to completeinfection. That
is, whenonescanhits amachineregardlesof whetherthis ma-
chineis vulnerablejnvulnerable infectedor with anunusedP
addressthetime it takesfor the worm to finish communicating
with this machineis onetime tick. This assumptiormight not
be realistic,but it cansimplify the modelwithout significantly
affecting the results.



TABLE |
THE PARAMETERS FOR THE SPREAD OF ACTIVE WORMS

| Parameters | Notation | Explanation

# of vulnerablemachines| N the numberof vulnerablemachines

Size of hitlist h the numberof infectedmachinesat the beginning of the spreadof active
worms

Scanningrate s the averagenumberof machinesscannedy an infected machineper unit time

Deathrate d the rate at which aninfection is detectedon a machineand eliminated
without patching

Patchingrate p the rate at which an infectedor vulnerablemachinebecomesnvulnerable

x10°
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(a) Effect of Hitlist Size (All casesare
without patchingand take a period of one
secondto completeinfection.)

Fig. 1.
scans/secondnd a deathrate of 0.001/second.)

Although the Internets addressspaceisn’'t completelycon-
nected,active worms always scan23? entry addressesThere-
fore, for randomscanningthe probability thatany computeris
hit by one scanis 2% Let m; andn; denotethe total number
of vulnerablemachines(including the infected ones)and the
numberof infectedmachinesattimetick ¢ (i > 0) respectiely.
Beforethe active worms spread(i = 0), mo = N andng = h.

Theoem1: If thereare m; vulnerablemachines(including
theinfectedones),andn; infectedcomputersthenon average,
the next time tick will have (m; —n;)[1 — (1 — 3z )*™] newly
infectedmachineswheres is the scanningrate.

PROOF: Let e; denotethe numberof newly infectedmachines
at time tick ¢ (i > 0). n; infectedmachinescan generatesn;

scandgn anattemptto infect othermachinesSoif we canprove

that B{e;11/k} = (m; —n;)[1 — (1 — 555)*] forary k& (k > 0)

scansthenthe equationalso holdswhenk = sn;.

We prove the abore equationby inductionon k. Whenk =
1, since there are (m; — n;) vulnerablemachinesthat have
not yet beeninfected, the probability that one scancan add
a newly infected machineis ™z, which is equialent to
(mi — n;)[1 — (1 — 55)']. Supposethat the theoremis true
for k = j, ie., E{6i+1/k‘ = ]} = (WLZ — n,)[l — (1 — 5%7)'7]
Then,whenk = j + 1, we divide j + 1 scansinto two parts:
the first j scansandthe last scan.Thereare two possibilities
for the last scan:addinga newly infectedmachineor not. Let

300 400
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(b) Effect of PatchingRate (All caseshave
a hitlist of 100 entriesand take a period of
one secondto completeinfection.)
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(c) Effect of Time to Complete Infection
(All caseshave a hitlist of 100 entriesand
a patchingrate of 0.0005/second.)

Modeling the Spreadof Active Worms that Employ RandomScanning(All casesare for 1,000,000vulnerablemachines,a scanningrate of 100

the variableY = 1 if the last scanhits a vulnerablemachine
that hasnot yet beeninfectedandlet Y = 0 otherwise.Then,

Eleit1/k=j+1}
= (Blein/k=j}+1)P(Y =1) + E{eina/k = j}-
P(Y =0)

= (B{eit1/k=j}+ 1)m¢ —n; — E{ei+1/k = j} N

9232
E{eit1/k=j}(1— e §§5i+l/k - J})
_ m¢23—2m +(1— ;E)E{eiﬂ/k =3}
= (mi—n)[l—(1— 2%)”1]

which meansthat whenk = j + 1, it is alsotrue. Therefore,
whenk = sn;, E{e;y1/k = sn;} = (mi—ni)[l—(l—ﬁ)sm].
Thatis, on the next time tick therewill be (m; —n;)[1 — (1 —

57)°™] expectednewly infectedmachines. |

Givendeathrated andpatchingratep, on the next time tick
therewill be dn; + pn; infectedmachinesthat will changeto
eithervulnerablemachineswithout beinginfectedor invulner
able machines,and the total numberof vulnerablemachines
(including the infected ones)will be reducedto (1 — p)m;.
Therefore,on the next time tick the numberof total infected



machineswill be Nit1 = N; + (mz _ nz)[l _ (1 _ #)sm] _
(d + p)n;. At the sametime, m; 1 = (1 — p)m;, which gives
m; = (1L —p)img = (1 — p)*N. Thatis,

nigt = (L=d=pni+[(1—p)'N —nil[1 = (1= 535)"™] (1)

wherei > 0 andny = h. Therecursionprocesswill stopwhen
thereare no more vulnerablemachinedeft or whenthe worm
cannotincreasethe total numberof infectedmachines.

Using Equation (1), we can find the characteristicof the
active worms’ spreading.For example, Figure 1(a) shavs the
propagationof the active worms with different hitlist sizes.
As the size of the hitlist increasesijt takes the worms less
time to spread.Figure 1(b) depictsanotherexample. As the
patchingrate grows, the spreadof active worms slows down.
This complieswith ourintuition. It shouldbenotedthatbecause
the patchingrate p > 0, the two slower curvesreturnto zero
at the end.Here,we only draw the uprising part of curvesand
ignorethe falling part.

At thebegginning,we assumahatit takesthewormsonetime
tick to infect a machine.To displaythe effect of the amountof
time it takesto infect a machineon the worm propagationwe
simply changethe time unit. For example,in Figure 1(c) we
first draw the curve with atime interval of onesecondwhichis
the amountof time requiredto completeinfection. If the worm
needs30 secondgo infect a machine,we setthe time unit to
30 secondsand changethe correspondings, d,p parameters
for this period of time. In this case the parameters, d, p will
become30s, 30d, 30p for a time period of 30 secondsThen,
we can use the AAWP model to get the result. But, now n;
expresseshe numberof infectedmachinesat 30; secondgi >
0). Thisfigureshavstheeffect of thetime to completeinfection
on the worm’s propagation.The worm'’s propagationwill be
slowed down asthetime requiredto infecta machineincreases.

We can changethe values of the parametersiV, h, s, d, p
and the time to completeinfection in the AAWP model to
obsene how active worms spread.This model can be used
to quantitatvely explain how we can monitor the spreadof
active worms, develop a sensordetectionsystem,and evaluate
the LaBreatool defensesystem,which we will cover later.

B. ComparingOur AANP Modelto the Epidemiolaical Model
and Weavers Simulator

In the Epidemiologicalmodel,a nonlineardifferential equa-
tion is usedto measurethe virus populationdynamics[7]:

dn
o Bn(l—n) —
o Bn(l —n) —dn

wheren(t) is the fraction of infectednodes,s is the birth rate
(the rate at which an infectedmachineinfects othervulnerable
machines)andd is the deathrate. The solution to the above
equationis

no(1 — p)
no + (1 — p — ng)e—B-dt

n(t) = (2)

size of hitlist
N

wherep = 4 andng = n(t = 0) = =k

In fact, we can easily deducethe relationshipbetweenthe
birth rate andthe scanningrate: 5 = %

It is interestingthat when the Code Red v2 worm suiged
in July of 2001, Staniford also independentlypresentedthe
samemodelto explain the RandomConstantSpread(or RCS)
theory of the Code Red v2 worm [5]. Zou extendedthe Epi-
demiologicalmodelto the two-factorworm model,which takes
considerationof the human countermeasurand the worm'’s
impacton Internettraffic andinfrastructure[12].

The differencedbetweerthe AAWP modelandthe Epidemi-
ological model are:

1) The Epidemiologicalmodel usesa continuoustime dif-
ferentialequationwhile the AAWP modelis basedon a
discretetime model.We believe thatthe AAWP modelis
moreaccurateBecausan the AAWP model,a computer
cannotinfect other machinesbeforeit is infected com-
pletely. But in the Epidemiologicalmodel, a computer
begins devoting itself to infecting other machineseven
thoughonly a “small part” of it is infected. Therefore,
the speedthat the worm can achieve and the numberof
machineghat canbe infectedare totally different.

The Epidemiologicalmodel neitherconsidersthe patch-
ing rate nor the time that it takes the worm to infect
a machine,while the AAWP model does. During the
propagationof the worm, it is possible nowadays to
promptly patchthe vulnerability on computersassuming
a reasonablepatching rate. And different worms have
different infection abilities which are reflected by the
scanningrate (or the birth rate) and the time taken to
infect a machine.The time requiredto infect a machine
alwaysdepend®n the sizeof theworm’ copy, thedegree
of network congestionthe distancebetweensourceand
destination,and the vulnerability that the worm exploit.
From Figure 1(c), it can be seenthat the time to infect
a machineis an importantfactorfor the spreadof active
worms.

In the AAWP model,we considerthe casethatthe worm
caninfect the samedestinationat the sametime, while
the Epidemiologicalmodelignoresthe case.In fact, it is
not uncommorfor avulnerablemachineto be hit by two
(or more) scansat the sametime.

Both models, however, try to get the expectednumber of
infected machines,given the size of the hitlist, total number
of vulnerable machines, scanning rate/birth rate and death
rate. The Epidemiologicalmodel can easily deducethe closed
form and can be usedin topology orientation,suchas E-mail
wormsor peerto-peerworms.In this paper we focuson active
wormsthatselectdestinationgandomlyor employ local subnet
scanning suchasthe CodeRedandNimdaworms.Hence,the
AAWP model, which is built on the “homogeneouamixing”
topology is sufficient for our work.

Figure2(a) shavs the comparisorbetweerthesetwo models
with 10,000 vulnerable machines,a hitlist with 1 entry a
birth rate of 5 /time tick and a deathrate of 1 /time tick
(the parametersare from [7]). It takes the Epidemiological

2)

3)



infected hosts

model about4 time ticks to enteran equilibrium stage,while
the AAWP model needsabout10 time ticks. Moreover, after
entering the equilibrium stage, the Epidemiological model
totally infects 8,000 vulnerablemachines(occupying 80% of
all vulnerablemachines)while the AAWP modelinfectsabout
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(a) All casesarefor 10,000vulnerablemachinesa hitlist with 1
entry a scanningrate of 2147500scans/timetick or a birth rate
of 5 /time tick and a deathrate of 1 /time tick. No patchingand
a time period of 1 time tick to completeinfection for the AAWP
model.

Fig. 2. Comparingthe AAWP
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(b) All casesarefor 1,000,000vulnerablemachinesa hitlist with
10,000entriesand a scanningrate of 100 scans/secondA time
periodof 30 secondgo completeinfectionfor Weaver’s simulator
andthe AAWP model. A deathrate of zero for both the AAWP
modelandthe Epidemiologicaimodel.No patchingfor the AAWP
model.
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(b) A simulationof the spreadof the CodeRedv2 worm (500,000
vulnerablemachinesstartingon a singlemachine,a scanningrate
of 2 scans/second, deathrate of 0.00002/seconda patchingrate
of 0.000002/second,and a time period of 1 secondto complete
infection).

Fig. 3. RealDatafrom CAIDA [11] and SimulatedCodeRedv2 Like Worm from the AAWP Model

4,750vulnerablemachinegoccupying 47.5% of all vulnerable
machines).This shavs that our model can better explain the
low level of worm prevalencein [9].

Weaver wrote a small, abstracsimulatorof a Warholworm'’s
spread[10]. This simulator uses a 32-bit, 6-round variant



of RC5 to generateall permutationsand random numbers.
We only modified one condition of this simulator to fit the
assumptionwhich we presentedabove. That is, all “newly”
infected machineson a previous time tick will be activated
at the sametime on the currenttime tick, other than based
on differentclocks. Figure 2(b) shavs the growing of infected
nodeswith time for the two modelsand Weaver’'s simulator
which have the following parameters:a total of 1,000,000
vulnerablemachinesa hitlist of size 10,000,a scanningrate of
100 scans/secon@ deathrate of zero,no patching,anda time
period of 30 secondgo infect one machine.This figure shavs
thatthe AAWP modeland Weaver’s simulatorresultsoverlap.
While our modeland Wearver’s simulatortake about6 minutes
to infect 90% of the vulnerablemachinesthe Epidemiological
model only takes about5 minutes.

C. Simulatingthe Code Redv2 Worm

On July 19th, 2001, the Code Red v2 worm infected more
than 359,000computersin lessthan 14 hours[11]. This worm
spreadsby probing random IP addressesand infecting all
the hoststhat are vulnerableto the IIS exploit. CAIDA [13]
collected real data to measurethe spreadof the Code Red
v2 worm. The datawere collectedfrom two locations:one /8
network at UCSD andtwo /16 networks at LawrenceBerkeley
Laboratory(LBL). In thesedata, hostswere consideredo be
infectedif they sentTCP SYN pacletson port80to noneistent
hosts on these networks. Figure 3(a) shavs the number of
infectedhostsover time [11].

We supposethat there are 500,000vulnerablemachinesin
the Internet,the CodeRedv2 worm startson a singlemachine,
it performs2 scansper secondandtakesonesecondo infecta
machine.Figure 3(b) shows the spreadof the simulatedCode
Redv2 like worm using our AAWP model,with a deathrate
of 0.00002/secondand a patchingrate of 0.000002/second.
Becausef the patchingrate,the curve goesdown slightly after
the worm spreadsor one day:.

IV. APPLICATIONS OF THE AAWP MODEL

A good model can reflect the spreadof real worms and at
the sametime resole mary practicaltask. In this section,we
applythe AAWP modelto monitoring,detectinganddefending
againstthe spreadof active worms.

A. Monitoring the Spead of Active Worms

How to monitor the spreadingrate of active wormsis an
interesting task. It has come to our attention that CAIDA
collectedreal datafrom one /8 network at UCSD andtwo /16
networksatLBL [11]. Canthesecollecteddatareflecttheactual
propagationof the Code Red v2 worm? Of coursethesedata
are only the lower bound of the spreadof the Code Red v2
worm. But, how muchdo they deviate from the reality?

Supposethat we can collect datafrom 2321 (0 < [ < 32)
addressedo estimatethe spreadof actve worms. Here, /i
network is the specialcaseof 222~ addressesTheseaddresses

x 10

___ simulated Code Red v2 Tike worm
224 addresses monitored

_ _ 2% addresses monitored
216 addresses monitored

_ 2® addresses monitored

3.5r

2.5r

1.5r

number of infected nodes
N

0.5r

0 5 10 5 20 25

1
time (hour)

Fig. 4. Collecting data from different addressspacesAll caseswere for
500,000vulnerablemachinesstartingon a single machine,a scanningrate of
2 scans/secondy deathrate of 0.00002/second,a patchingrate of 0.000002
/second,anda time period of 1 secondto completeinfection.

are consideredunusedIP addressesWhenthe scansfrom the
infected machinehit ary addressin this space,it is counted
if andonly if it hasnot beencountedbefore. The probability
that one scanhits this spaceis ZZQT; % If active worms
cangenerates scanspertime tick, thenthe probability that an
uncountedinfected machineis obsened on the next time tick
is prob =1—(1-— 2;;1)8 = 1— (1 - 3)*. Furthermorejf
2! >> 1 and?2! >> s, then

i)szl—e_f’

probzl—(1—2l

3

Let 4; denotethe numberof obsened infected machines
at time tick ¢ (i > 0). Before time tick i + 1, there are
n;—A; uncountednfectedmachinesTheeventsthatuncounted
infectedmachinesareobsenedareindependendf oneanother
Hence, the number of “newly” obsenred infected machines
satisfiesthe Binomial distribution. Then, at time tick ¢ + 1
the expectednumberof “newly” obsened infected machines
is prob - (n; — A;). Therefore,

Aiy1 = A;i+prob-(n; — A;) = (1 —prob)A; +prob-n; (4)

where,i > 0 and 4¢ = 0.

Basedon the AAWP model, we can evaluatethe effect of
the differentaddresspacedrom which we collectdata.Figure
4 showvs one examplein which we simulatethe Code Red v2
worm. The curve where 224 addressesre monitoredis very
closeto the “real” worm propagatiorusingthe AAWP model.
Thecurve where22° addressearemonitoredgrows at a slower
ratethanthecurve where22* addressearemonitored put atthe
sametime is a muchbetterrepresentatiothanthe curve where
216 addressearemonitored.The curve where2? addresseare
monitored gives the worst results, which can be understood
from Equation(3): whenl = 24, prob ~ 0, then A;; =~ A;,
making the curve a horizontalline alongthe x-axis.



From the analysisabove, we concludethat monitoring 224
addressegives us a better representatiorof the propagation
of active worms. But an addressspacesmallerthan22° is not
adequatdo obsene the actualspreadof active worms.

B. DetectionSpeed

One of the goalsof modelingthe spreadof active wormsis
to be ableto detectthem.Here,we presenta simpleanduseful
sensordetectionsystemand usethe AAWP modelto evaluate
its performance.

1) Methodolayy: It is vital to detectactve worms effec-
tively. In the nearfuture active worms may spreadacrossthe
whole Internetin a very shortperiod of time [10], makingthe
averagedetectiontime critical.

It is easyto figure out one simple detectionsystem.First,
put somesensorsin the Internetto monitor a set of unused
IP addressesWhen the randomscansfrom active worms hit
theselP addresseghey are detectedby the sensorsHowever,
if theworms’ designerknow which unusedP addressemon-
itored by sensorsthey could launch DoS attacksby sending
mary pacletsto the sensorscausingthemto generatemary
false alarms.Therefore,sensorsamust have the intelligenceto
distinguishbetweenthe scansfrom active worms and DoS at-
tacks,which requiresa more complex sensordetectionsystem.
However, this challengeis beyond the scopeof this paper

For this simple detectionsystem,someinterestingquestions
needto be answered:

o How mary unusedIP addresseshould be monitoredby
sensorsn orderto detectactive worms rapidly?

« Giventhe numberof IP addressesonitored,whatis the
averagetime requiredto detectworms?

2) Performanceof the SensorDetection System: The per
formanceof the sensordetectionsystemdependsmainly on
the detectiontime. An ideal detectionsystemshouldbe ableto
detectactive worms at the beginning of their propagation\We
usethe averagedetectiontime asour performancendicatorfor
the sensordetectionsystem.Let T,; denotethe detectiontime.
Below, we will deducethe relationshipbetweenthe average
detectiontime andthe numberof unusedlP addressethat are
monitored.

Supposehat thereare v unusedIP addressesnonitoredby
sensorsFor a single scan,the probability that it is detectedby
sensorss s3z. Thus,for k scans.the probability that at least
onescanis detectecby sensorss 1 — (1 — 5% )",

Let D; indicate the probability that a worm is detectedat
time tick ¢+ (0 < i < j+1), where Dy = 0. Also note that
at time tick j thereare eitherno more vulnerablemachinesor
the active worms cannotincreasethe total numberof infected
machinesHere, we assumethat even if sensordail to detect
active worms, peoplewill finally detectthem, which means
Dj;y1 = 1. Sincen;_; infectedmachinescan generatesn;

scans,
u

Di=1~ (1~ g

)Snz’—l

®)

wherel < ¢ < j. Thenthe expectedvalue of detectiontime
Ty is:
j+1 k—1

E{T}=) k- [H (1—Dy)]
k=1

Basedon the above formula and the AAWP model, Figure
5(a) shaws the relationshipbetweenthe averagedetectiontime
and the number of unusedIP addresseghat are monitored
by sensorsvhen the active worms spreadwith varying hitlist
sizes.Fromthis figure,we know thatin the caseof a simulated
CodeRed V2 like worm (size of hitlist = 1), when monitoring
224 addressesthe averagedetectiontime is only about two
minutes;whenmonitoring2'® addresseghe averagedetection
time increasesp to abouttwo hours.If we wantto detectthis
worm in one hour, morethan2'® unusedP addressemustbe
monitoredby sensorsOn the other hand, althoughthe worm
with a larger hitlist spread<faster it canalsobe detectedn a
shorterperiod of time. For example,when monitoring 2'6 IP
addresseswe needabouttwo hoursto detecta worm starting
on a single machine,while we need 36 minutesto detecta
worm with a hitlist of 10 machinesand only 5 minutesto
detecta worm with a hitlist of 100 machines.Tablell showvs
somesampleresultsin Figure 5(a).

This simpledetectionsystemcanbe easilyextendedto more
complex systemsFor example,to reducethe numberof false
alarmsthe sensorshouldreceve several scansgduring a period
of onetime tick beforethe systemcan actually detectworms.
Set S, to be the leastnumberof scansreceved by a sensor
to generatean alarm during the period of one time tick. A
larger S,, value generatedessfalsealarms.The probability of
detection,however, is alsoreduced Basedon the definition of
Sy, the Equation(S) becomes

Zy

where1l < ¢ < j. Figure 5(b) shaws the effect of S,, on

the sensordetectionsystem.Even though a large S,, value

can reducethe numberof falsealarms,it reducesthe overall

performanceof the system. So reliability and performance
are a tradeof. Also, if a systemwith a large S,, value does
not monitor enoughaddressest cannotcompletelydetectthe

worms. For example,when S,, = 5 and the addressespace
monitoredis lessthan2'!, the systemcannotdetectthe worms

evenif the whole Internethasbeeninfected.

(6)

(smi—1) u u

1_ _ sn,-_l—l _ 1
(smi 1—l ( 232) (232)

C. Effectivenes®f the DefenseSystem

Another goal of modelingthe spreadof active wormsis to
defendagainstctive worms.Here,we extendthe AAWP model
to analyzethe LaBreatool, which is put forward by Liston to
slow down or even stop the spreadof active worms[14].

1) LaBrea: LaBreais a tool that takes over unusedIP ad-
dresse®n anetwork andcreatesvirtual machines’thatanswer
to connectiorrequestg15]. LaBrearepliesto thoseconnection
requestsn sucha way thatcauseghe machineat the otherend
to get “stuck”. One can intentionally hold a connectionopen



expected value of detection time(second) (log)

—=— size of hitlist =1

—+— size of hitlist = 10
—*— size of hitlist = 100

. .
10 20
Iogz(number of unused IP addresses monitored by sensors)

25

(a) Effect of Hitlist Size (numberof scansreceved = 1)

e
o,
S
T

P
o
©
T

—&— number of scans received = 1

expected value of detection time(second) (log)

—— number of scans received = 2
—+— number of scans received = 5
T T

=
58
o

20
by sensors)

5 10 15 25
Iog2 (number of unused IP addresses monitored

(b) Effect of Numberof ScansReceved (A hitlist with 1
entry)

Fig. 5. Performanceof sensordetectionsystem.All casesare for 500,000vulnerablemachinesa scanningrate of 2 scans/seconda deathrate of 0.00002
/second a patchingrate of 0.000002/second,anda time period of 1 secondto completeinfection.
TABLE I
AVERAGE DETECTION TIME WITH HITLISTSOF DIFFERENT SIZESAND DIFFERENT NUMBERS OF UNUSED |P ADDRESSES MONITORED BY SENSORS
(SECOND)
| numberof IP addressesnonitored]| 2™ | 2™ | 216 | 218 | 229 | 2% | 2% |
size of hitlist = 1 20120.00| 13800.00| 8241.50| 4021.90| 1530.60| 466.28| 125.00
size of hitlist =10 10007.00| 5267.30 | 2184.70| 711.70 | 197.14 | 51.14 | 13.25
size of hitlist =100 3030.40 | 1065.70 | 308.20 | 81.06 20.90 5.63 1.84

for aslong ashe/shewishes.Thatis, the LaBreatool monitors
all traffic destinedfor someunusedIP addressesWhen one
scanhits theselP addresseg‘virtual machines”),the LaBrea
tool will reply and establisha connectionwith the infected
machine.This connectioncanlast for a very long time.

Beforewe apply the LaBreatool extensiely, we shouldfirst
attemptto answemnequestionHow mary unusedP addresses
shouldbe monitoredby the LaBreatool to defendagainsiactive
worms effectively?

2) Performanceof the LaBreaTool DefenseSystem:Assume
thatthe LaBreatool is installedin the Internetandis monitoring
u unusedP addressesSupposéhatnow therearek scandrom
infectedmachinesbeginningto searctthe Internet.Becausehe
LaBreatool cantrap the scanningthreads after one time tick,
therewill be 53:k scanninghreadstrapped.Thatis, therewill
only be (1 — 5%)k scanningthreadsleft.

Let k; and e; denotethe averagenumberof scansand the
number of newly infected machinesat time tick ¢ (i > 0)
respectiely. Takinginto consideratiorthatthe LaBreatool will
affect the total numberof scanswe extend Equation(1) to

m; = (1-p)'N
u
kivi = (1—d—p)ki(1- 2@)‘}'86,’
1 ..
eiy1 = (mi—ng)[l— (1 — o5)"+]

232

(L—d—p)ni+eip

Ni+1 =
wherei > 0, kg = 0 andeg = ng = h. The recursionprocess
will stopwhenthereare no more vulnerablemachinedeft or
when the worm cannotincreasethe total numberof infected
machineslt shouldbe notedthatif « = 0, the setof formulae
outlined above turn out to be the sameas Equation(1).

Figure 6 showvs a simulation of a Code Red v2 like worm
spreadingWhenthe LaBreatool monitorslessthan2'® unused
IP addressesthe worm spreadis only slightly affected. But
when more than 28 unusedIP addressesre monitored,the
LaBreatool is able to effectively defend againstthe worm
propagation\We canalso seethat the total numberof infected
machinesstopsincreasingbeforeall the vulnerablemachines
are actuallyinfectedwhenthe LaBreamonitorsmorethan2'®
unusedIP addresses.

Therefore,the LaBreatool can really slov down or stop
the spreadof active worms. However, at least2'® unusedIP
addresseareneededo defendagainsiactive wormseffectively.
It might not be easyto persuademary network administrators
to install the LaBrea.lf we canget oneunusedclassA subnet
(an addressspaceof 22* addresses)which is not publicly
adwertised,andinstall the LaBreatool to monitorthetraffic into
this subnet,this seemsto be a good start for fighting against
active worms.
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Fig. 6. Performanceof the LaBreatool detectionsystem.All casesare for

500,000vulnerablemachinesstartingon a single machine,a scanningrate of
2 scans/second deathrate of 0.00002/second,a patchingrate of 0.000002
/secondanda time period of 1 secondto completeinfection.

V. MODELING THE SPREAD OF ACTIVE WORMS THAT
EMPLOY LOCAL SUBNET SCANNING

Insteadof simply selectingdestinationsat random the Code
Red Il andthe Nimda worms preferentiallysearchfor targets
on the “local” addressspace[1], [3]. In this part, we extend
the AAWP to the Local AAWP (LAAWP) modelto understand
the characteristicof the spreadof active worms that employ
local subnetscanning.

A. LAAWP Model

As the AAWP model,the LAAWP modelusesdeterministic
approximation We focuson the actve worms’ scanningpolicy
andignoreboththe deathrateandthe patchingrateto simplify
the model. The function of firewalls is not consideredegithet

Now supposethat a worm scansthe Internetasfollows:

e po Of the time, a randomaddresswill be chosen

« p; of the time, an addresswith the samefirst octet will

be chosen

o py Of the time, an addresswith the samefirst two octets

will be chosen
where,po+p1+p2 = 1. We canregardrandomscanningasone
specialcaseof local subnetscanningwhenpy = 1, p1 = 0,
andp, = 0.

Assumethat the vulnerablemachinesare evenly distributed
in every subnetwhich is identified by the first two octets.The
subnetscanbe classifiedinto threedifferentkinds of networks:

« A “special” subnet(denotedby Subnettype 1), which

always hasa larger hitlist size.

« 28 —1 subnetshaving the samefirst octetasthe “special”

subnet(denotedby Subnettype 2).

« Other2!6 — 28 subnets(denotedby Subnettype 3).
Differentkinds of networks have hitlists of differentsizes.In
the sametype of subnetall networks have the samehitlist size.

Let hy, ho, and h3 denotethe size of the hitlist in Subnettype
1, 2, and 3, respectiely.

Let by, by, and b3 denotethe averagenumberof infected
machinesin Subnettype 1, 2, and 3, respectiely. And let
k1, ks, and k3 denotethe average number of scanshitting
Subnettype 1, 2, and 3, respectiely. Then at sometime tick,
the relationshipbetweenthe averagenumberof scanshitting
Subnettype i (i = 1,2, or 3) and the averagenumber of
infectedmachinesin differentSubnetss

ki = pasby + pisby + (28 — 1) -by]/28 +
pos[by + (28 — 1) - by + (216 — 28) - 3] /216
ky = pasby+pis[by + (25 —1)-by]/2% +
pos[by + (28 — 1) - by + (216 — 28) - b3]/2"6
ks = pasbz + pisbs +

pos[by + (28 — 1) - by + (2'6 — 28) - 3] /216

For k; (i = 1,2, or 3), thefirst item is the averagenumber
of scanscomingfrom the local subnet(with the samefirst two
octets).Thesecondtem is theaveragenumberof scanscoming
from neighboringsubnets(with the samefirst octet). And the
last item is the averagenumberof scanscoming from global
subnets.

In every subnetthe scanswill randomly hit targets, which
can be modeledby the AAWP model. The total number of
machineswill be 2%, insteadof 232, andthe total numberof
scanswill be k;. Thus, Equation(1) becomes

)07

where,i = 1,2, or 3 and¥;, is the numberof infectedmachines
on the next time tick. The recursionprocesswill stop when
thereareno morevulnerablemachinedeft. At sometime tick,

the total numberof infected machineswill be b; + (28 — 1) -

by + (26 — 28) - bs.

Basedon the above formulae,we canunderstandhe charac-
teristicsof local subnetscanningand the effect of the hitlist’s
distribution. Differentpg, p1, p. andhy, ha, hs cangenerate
different patternsfor the spreadof worms.

Four casesare considerechere:

1) Randomscanning(pp = 1, p1 = 0, p2 = 0): In this
casek1 — k2 — k3 — number of totalAilréfected machines
which meansthe distribution of the hitlist cannoteffect
the spreadof active worms.

A hitlist with an even distribution (h; = hy = h3): This
givesk; = ks = k3 = sby = sby = sbs. Local subnet
scanning therefore,cannotchangethe spreadof active
wormsin this case.

Similar to the Nimda worm (po = 0.25, p; = 0.25,
p2 = 0.5): In this case,we selectdifferentdistributions
of the hitlist, just asin Figure 7(a). Evenly distributed
hitlists give thebestperformancewhile puttingall hitlists
togetherin one“special” subnet(h; = 10, hy = hg = 0)
gives us the worst performance This figure shavs that

N
b =bi+ (2T6 (7)

2)

3

~
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Fig. 7. Modelingthe Spreadof Active WormsthatEmploy Local SubnetScanning/All casesarefor 1,000,000v/ulnerablemachineswvhich areevenly distributed
to every subnet,a scanningrate of 100 scans/timetick and a time period of 1 time tick to completeinfection.)

the hitlist’s distribution can affect the spreadof active
worms.

Local subnetscanningwith a hitlist of unevendistribution
(fix hy, ha, hz andlet hy > hs > h3): This standsfor a
hitlist of unevendistribution anda centralizationof more
hitlist machinesin the “special” subnet. Surprisingly
however, Figure 7(b) shavs thatin this caselocal subnet
scanningslows down the propagationof active worms.
We will further discusswhy worm designersselectthis
scanningtechniquein the next section.

From the four casesabore, we see that for local subnet
scanningthe hitlist’s distribution can influencethe spreadof
active worms, while the even distribution gives us the best
performanceln additionwhenthe hitlist is more concentrated
in the “special” subnet,local subnetscanningslows down the
spreadof active worms.

4)

B. Discussionof the Local SubnetScanningPolicy

The LAAWP modelimplies that local subnetscanningmay
slow down the spreadcof active worms.Why do thedesignerof
active worms usethis technique?Thereare two main reasons:

1) Firewalls canprotectvulnerablemachinesbehindit. But
local subnetscanningallows a single copy of a worm
running behindthe firewall to rapidly infect all the other
local vulnerablemachines.
Onesubnetalwayshbelongsto a compary or organization
and hasa lot of similar machines.Therefore,it can be
expectedthatif a machinehasa securityhole,thenthere
is a high probability that mary other machinesin the
samenetwork have the samesecurityhole.

2)

VI. CONCLUSIONS

In this paperwe presentthe AAWP model to analyzethe
characteristic®f the spreadof active worms. Eventhoughthe
AAWP model also useddeterministicapproximation,it gives
more realistic resultswhen comparedto the Epidemiological
model. The simulationresultsshow that our model can better
explain the “mystery” in [9]. The AAWP modelcanbe usedto
simulatethe CodeRedv2 worm with thefollowing parameters:
500,000 vulnerable machines,starting on a single machine,
a scanningrate of 2 scans/seconda deathrate of 0.00002
/seconda patchingrateof 0.000002/secondandatime period
of 1 secondto completeinfection.

Taking the Code Red v2 worm as an example, we apply
our model to answerthree different questionsFirst, from our
model we assertthat an addressspaceof 224 IP addressess
large enoughto obtainrealisticresults,while an addresspace
smaller than 22° addressess not large enoughto effectively
obtain ary realistic information about the spreadof worms.
Secondthe AAWP modelis usedto evaluatethe performance
of a simple sensordetectionsystem.More than2'® unusedP
addressesre neededfor the sensorsto detectthe Code Red
v2 like worm in one hour. Worms with a larger hitlist can be
detectedin a shorterperiod of time, even thoughthey spread
at a much fasterrate. This simple sensordetectionsystemis
the first steptowardsa practical detectionsystemthat detects
active wormsthroughscanningrequencie®r sourcelP address
distributions.We planto useour modelto evaluatethis type of
detectionsystem Finally, the AAWP modelis usedto evaluate
the performanceof the LaBreatool defensesystem.Similarly,
an addressspaceof more than 2'® unusedIP addressess
neededy LaBreato defendagainsthe CodeRedv? like worm



effectively. We planto apply our modelto asses®therpublicly
availabledefensesystemsandcompareherelative performance
of differentdefensesystems.

As part of our ongoingwork, we extend the AAWP model
to the LAAWP modelto understandhe spreadodf active worms
using local subnetscanning.The distribution of the hitlist can
affect the local subnetscanningpolicy. In particulay a worm
using an evenly distributed hitlist spreadsat the fastestrate.
When the hitlist is concentratedn some subnet,the spread
of active wormsis slowed down. In the LAAWP model, the
vulnerablemachinesare assumedo be evenly distributed in
every subnet.We plan to studythe effect of the distribution of
vulnerablemachinesn orderto get more accurateresults.
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