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Abstract— Active worms spread in an automated fashion and
can flood the Inter net in a very short time. Modeling the spreadof
active worms can help us understand how active worms spread,
and how we can monitor and defend against the propagation
of worms effectively. In this paper, we present a mathematical
model, referred to as the Analytical Active Worm Propagation
(AAWP) model, which characterizes the propagation of worms
that employ random scanning. We compare our model with the
Epidemiological model and Weaver’s simulator. Our resultsshow
that our model can characterize the spread of worms effectively.
Taking the Code Red v2 worm as an example, we give a quan-
titati ve analysis for monitoring, detecting and defending against
worms. Furthermor e, we extend our AAWP model to understand
the spread of worms that employ local subnet scanning. To the
bestof our knowledge,there is no model for the spreadof a worm
that employs the localized scanning strategy and we believe that
this is the first attempt on understanding local subnet scanning
quantitati vely.

Index Terms— security, worm, modeling

I . INTRODUCTION

Active worms have beena persistentsecurity threaton the
Internetsincethe Morris worm arosein 1988.The CodeRed
andNimda worms infectedhundredsof thousandsof systems,
andcostboth the public andprivatesectorsmillions of dollars
[1], [2], [3], [4]. Active wormspropagateby infectingcomputer
systemsandby using infectedcomputersto spreadthe worms
in anautomatedfashion.Stanifordet al. show thatactiveworms
can potentially spreadacrossthe Internetwithin seconds[5].
It is thereforeof greatimportanceto characterizeandmonitor
the spreadof active worms,and be able to derive methodsto
effectively defendour systemsagainstthem.

About ten yearsago,KephartandWhite presentedthe Epi-
demiologicalmodel to understandand control the prevalence
of viruses[6], [7], [8]. This model is basedon biological epi-
demiologyandusesnonlineardifferentialequationsto provide
a qualitative understandingof virus spreading.White pointed
out, however, that the “mystery” of the Epidemiologicalmodel
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is that it fails to predictthatvirtually mostviruseswill beslow
in global prevalence[9].

In this paper, we present a model, referred to as the
Analytical Active Worm Propagation(AAWP) model, which
characterizesthe propagationof worms that employ random
scanning.We take advantageof a discrete time model and
deterministicapproximationto describethe spreadof active
worms. Our model capturesthe characteristicsof the spread
of active wormsandexplainsthe aforementioned“mystery” to
someextent. In order to evaluateour model,we compareit to
thesimulatorin [10]. Experimentalresultsshow thatour model
caneffectively characterizethe propagationof worms.

In additionto modelingthe spreadof worms,we attemptto
answerthe following questions:� How can we monitor the spreadof active worms ac-

curately?When the Code Red v2 worm broke out on
July 19th, 2001, CAIDA usedone /8 network and two
/16 networks to monitor the spread[11]. It is not clear,
however, whetherthe datacollectedfrom thesenetworks
canreflectthe actualspreadof the worm. If the datadoes
not reflectthe actualspreadof the worm, what is the size
of thenetwork thatshouldbeusedto monitor the infected
machines?Our resultsshow that monitoringa /8 network
is sufficient for characterizingthe spreadof active worms
accurately.� How canwe detectthespreadof active wormsin a timely
fashion?To the bestof our knowledge,no effective worm
detectionmechanismis available. One simple detection
systemusesunusedIP addressesto detectthe scansfrom
active worms. With the help of the AAWP model, we
derive thenumberof IP addressesneededfor detectingthe
spreadof active worms effectively. Although this simple
detectionsystemmight generatefalsealarms,we believe
that it is the first step in understandingthe effectiveness
of the detectionsystemquantitatively.� How can we defendagainstthe spreadof active worms
effectively? We perform a study on how well a worm
defendingtool can slow down the propagationof worms
basedon our model. Our study quantitatively illustrates
the sizeof addressspaceneededto stopor slow down the
CodeRedv2 like wormseffectively.

Furthermore,developingan analyticalmodel for the spread



of a worm employing a localized scanningstrategy is sig-
nificantly more difficult than that for random scanning[5].
We extend the AAWP model to characterizethe spreadof
a worm that employs the localized scanningstrategy, which
is used by the Code Red II and Nimda worms. Our model
shows that worms that employ localizedscanningspreadat a
slower rate thanthoseemploying randomscanningdespitethe
fact that localized scanningcan potentially penetratebeyond
firewalls. To the bestof our knowledge,this is the first attempt
in understandingthelocalsubnetscanningpolicy quantitatively.

The remainderof this paperis structuredasfollows. Section
II describeshow active worms spread,and introduces the
parametersfor characterizingtheir propagation.In SectionIII,
we presentthe AAWP model,andcompareit to the Epidemio-
logical modelandWeaver’s simulator. In addition,we usethe
AAWP modelto simulatethespreadof theCodeRedv2 worm.
SectionIV outlinestheapplicationsof theAAWPmodel,which
include verifying the correctnessof the worm’s monitoring
data,developinga detectionsystemandevaluatingthe LaBrea
defensesystem.In SectionV, we extendthe AAWP model to
worms that employ local subnetscanning.We concludethis
paperin SectionVI with a brief summaryand an outline of
our future work.

I I . SPREAD OF ACTIVE WORMS

In this section,we first describehow active worms spread,
then introduce the parametersused in the spreadof active
worms.Finally, wepresenttwo worm scanningmodels:random
scanningand local subnetscanning.

Whenan active worm is fired into the Internet,it simultane-
ously scansmany machinesin an attemptto find a vulnerable
machineto infect. When it finally finds its prey, it sendsout
a probeto infect the target. If successful,a copy of this worm
is transferredto this new host. This new host then begins
runningthe worm andtries to infect othermachines.Whenan
invulnerablemachineor an unusedIP addressis reached,the
worm posesno threat.During the worm’s spreadingprocess,
some machinesmight stop functioning properly, forcing the
usersto reboot thesecomputersor at least kill someof the
processesthat may have beenexploited by the worm. Then
theseinfected machinesbecomevulnerablemachinesagain,
and are still inclined to further infection. When the worm is
detected,peoplewill try to slow it down or stop it. A patch,
which repairs the security hole of the machines,is used to
defendagainstworms.Whenaninfectedor vulnerablemachine
is patched,it becomesan invulnerablemachine.

To speedup the spreadof active worms,Weaver presented
the “hitlist” idea [10]. Long before an attacker releasesthe
worm, he/shegathersa list of potentiallyvulnerablemachines
with goodnetwork connections.After the worm hasbeenfired
onto an initial machineon this list, it begins scanningdown
the list. Hence,the worm will first start infecting the machines
on this list. Oncethis list hasbeenexhausted,the worm will
then start infecting other vulnerablemachines.The machines
on this list arereferredto asthe“hitlist”. After theworm infects

the hitlist rapidly, it usestheseinfectedmachinesas“stepping
stones”to searchfor other vulnerablemachines.In this paper
we do not considertheamountof time it takesa worm to infect
the hitlist sincethe hitlist canbe acquiredwell beforea worm
is releasedandbeinfectedin a very shortperiodof time. Table
I shows theparametersinvolved in the spreadof active worms.

Thereareseveral differentscanningmechanismsthat active
worms employ, such as random, local subnet, permutation
and topological scanning[5]. In this paperwe focus on two
mechanisms,randomscanningand local subnetscanning.In
random scanning,it is assumedthat every computer in the
Internet is just as likely to infect or be infected by other
computers.Sucha network canbepicturedasa fully-connected
graph in which the nodesrepresentcomputersand the arcs
representconnections(neighboring-relationships)betweenpairs
of nodes.This topology is called “homogeneousmixing” in
the theoreticalepidemiology[7]. Our AAWP model is usedto
modelrandomscans.In local subnetscanning,computersalso
connectto eachotherdirectly, forming “homogeneousmixing”.
However, instead of selecting targets randomly, the worms
preferentiallyscanfor hostson the “local” addressspace.For
example,theNimdaworm selectstargetIP addressesasfollows
[3]:� 50%of the time, an addresswith thesamefirst two octets

will be chosen.� 25% of the time, an addresswith the samefirst octetwill
be chosen.� 25% of the time, a randomaddresswill be chosen.

We will extend the AAWP model to the Local AAWP
(LAAWP) model in SectionV to understandthe function of
the propagationparametersand analyzethe spreadof active
wormsthat employ local subnetscanning.

I I I . MODELING THE SPREAD OF ACTIVE WORMS THAT

EMPLOY RANDOM SCANNING

To understandthe characteristicsof the spreadof active
worms that employ randomscanning,we develop the AAWP
model, which uses the discrete time and continuous state
deterministicapproximationmodel. In this section, we first
describethe AAWP model in detail, then compareit to the
Epidemiologicalmodel and Weaver’s simulator, finally use it
to simulatethe CodeRedv2 worm.

A. DeterministicApproximationModeling

We assumethat worms can simultaneouslyscanmany ma-
chinesandwill not re-infecta machinethat is alreadyinfected.
We also assumethat the machineson the hitlist are already
infectedat the start of the worm’s propagation.Supposethat
an active worm takesonetime tick to completeinfection.That
is, whenonescanhitsamachine,regardlessof whetherthisma-
chineis vulnerable,invulnerable,infectedor with anunusedIP
address,thetime it takesfor theworm to finish communicating
with this machineis onetime tick. This assumptionmight not
be realistic,but it cansimplify the modelwithout significantly
affecting the results.



TABLE I

THE PARAMETERS FOR THE SPREAD OF ACTIVE WORMS

Parameters Notation Explanation

# of vulnerablemachines
�

the numberof vulnerablemachines
Sizeof hitlist � the numberof infectedmachinesat the beginning of the spreadof active

worms
Scanningrate � the averagenumberof machinesscannedby an infectedmachineper unit time
Deathrate � the rateat which an infection is detectedon a machineandeliminated

without patching
Patchingrate � the rateat which an infectedor vulnerablemachinebecomesinvulnerable
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(a) Effect of Hitlist Size (All casesare
without patchingand take a period of one
secondto completeinfection.)
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patching rate = 0 /second
patching rate = 0.0005 /second
patching rate = 0.001 /second

(b) Effect of PatchingRate(All caseshave
a hitlist of 100 entriesand take a period of
onesecondto completeinfection.)
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(c) Effect of Time to Complete Infection
(All caseshave a hitlist of 100 entriesand
a patchingrateof 0.0005/second.)

Fig. 1. Modeling the Spreadof Active Worms that Employ RandomScanning(All casesare for 1,000,000vulnerablemachines,a scanningrate of 100
scans/second,anda deathrateof 0.001/second.)

Although the Internet’s addressspaceisn’t completelycon-
nected,active worms always scan ���
	 entry addresses.There-
fore, for randomscanning,the probability thatany computeris
hit by onescanis �	
��� . Let ��� and ��� denotethe total number
of vulnerablemachines(including the infected ones)and the
numberof infectedmachinesat time tick ����������� respectively.
Beforethe active wormsspread( � �!� ), �#"$� �

and �%"$�&� .
Theorem1: If thereare � � vulnerablemachines(including

the infectedones),and � � infectedcomputers,thenon average,
the next time tick will have �'�#�)(������+*-,�(.�/,�(0�	
�1� �/2436587 newly
infectedmachines,where � is the scanningrate.
PROOF: Let 9 � denotethe numberof newly infectedmachines
at time tick �:���;�<�=� . � � infectedmachinescan generate�>� �
scansin anattemptto infect othermachines.Soif we canprove
that ?A@B9 �DC � E�FHG �I�'� � (J� � �K*L,M(N�O,M( �	
�1� �/PQ7 for any

F � FSR ���
scans,then the equationalsoholdswhen

F �&�>��� .
We prove the above equationby inductionon

F
. When

F �, , since there are �'�#�T(!���8� vulnerablemachinesthat have
not yet beeninfected, the probability that one scancan add
a newly infected machineis U 54VH365	 �1� , which is equivalent to�����W(����1�+*-,X(Y�/,Z( �	
��� � � 7 . Supposethat the theoremis true
for

F �&[ , i.e., ?A@Q9 �DC � E6F �&[ G �\��� � (]� � �K*L,^(!�/,^(_�	 �1� ��`K7 .Then,when
F �a[cbd, , we divide [cb!, scansinto two parts:

the first [ scansand the last scan.Thereare two possibilities
for the last scan:addinga newly infectedmachineor not. Let

the variable ef�g, if the last scanhits a vulnerablemachine
that hasnot yet beeninfectedandlet eh�a� otherwise.Then,i$jKk+lLmon
p>qcrts�u]vKwr x�i$jKk lLmon p>qyrNs�wzu{vK|8}yx�~ar�v�|Hu�i$j+k lDmon p>qyrNs�w��}yx�~�r]�B|r x�i$jKk lLmon p>qyrNs�wzu{vK|Q� l��#��l��#i$j+kKlLm%n/p+qcrts�w�+�O� ui$jKk+lLmon
p>qcrts�w�x8vW��� l��#��l��#i$j+kKlLm%n/p+qcrts�w�+�O� |r � l �S� l� �O� u�x8vz� v� �O� |8i$jKk+lLmon/p>qcrts�wr x � l �S� l |
��vz��x8v�� v�+�O� |�� m%n��
which meansthat when

F �Y[ZbY, , it is also true. Therefore,
when

F �&�>� � , ?A@B9 �DC � E�F �&�>� � G ����� � (�� � �K*L,�(A�O,�(��	 ��� �
243�587 .That is, on the next time tick therewill be ��� � (�� � �K*L,�(��/,�(�	
�1� �/243�5O7 expectednewly infectedmachines.

Givendeathrate � andpatchingrate � , on thenext time tick
therewill be �=� � bN��� � infectedmachinesthat will changeto
eithervulnerablemachineswithout beinginfectedor invulner-
able machines,and the total numberof vulnerablemachines
(including the infected ones)will be reducedto �O,�(��H�O�#� .
Therefore,on the next time tick the numberof total infected



machineswill be ���LC � �<���obd������({���8�K*L,;(!�/,;( �	 ��� �/243 5 7H(�'�ybN�H�4��� . At the sametime, ���DC � �h�O,;(��o�4��� , which gives�����I�/,�(S�o� � �S"$�h�O,�(#�H� � � . That is,���DC � �h�O,M(J��(Z�H�O���>b.*D�O,M(Z�H� � � (�����78*L,M(N�O,M( ,� �
	 � 243 5 7 (1)

where ����� and � " �d� . The recursionprocesswill stopwhen
thereareno morevulnerablemachinesleft or whenthe worm
cannotincreasethe total numberof infectedmachines.

Using Equation(1), we can find the characteristicsof the
active worms’ spreading.For example,Figure 1(a) shows the
propagationof the active worms with different hitlist sizes.
As the size of the hitlist increases,it takes the worms less
time to spread.Figure 1(b) depictsanotherexample. As the
patchingrate grows, the spreadof active worms slows down.
Thiscomplieswith our intuition. It shouldbenotedthatbecause
the patchingrate � R � , the two slower curves return to zero
at the end.Here,we only draw the uprisingpart of curvesand
ignore the falling part.

At thebeginning,we assumethatit takesthewormsonetime
tick to infect a machine.To displaythe effect of the amountof
time it takesto infect a machineon the worm propagation,we
simply changethe time unit. For example, in Figure 1(c) we
first draw thecurve with a time interval of onesecond,which is
theamountof time requiredto completeinfection.If theworm
needs30 secondsto infect a machine,we set the time unit to
30 seconds,and changethe corresponding�=�
�)�'� parameters
for this periodof time. In this case,the parameters�=�
�)�'� will
become�=�=�=�
�=�6�)�
�6�+� for a time period of 30 seconds.Then,
we can use the AAWP model to get the result. But, now � �
expressesthenumberof infectedmachinesat 30� seconds�'����=� . Thisfigureshowstheeffectof thetimeto completeinfection
on the worm’s propagation.The worm’s propagationwill be
sloweddown asthetime requiredto infect a machineincreases.

We can changethe values of the parameters
� �������6�
���1�

and the time to complete infection in the AAWP model to
observe how active worms spread.This model can be used
to quantitatively explain how we can monitor the spreadof
active worms,develop a sensordetectionsystem,andevaluate
the LaBreatool defensesystem,which we will cover later.

B. ComparingOur AAWPModelto theEpidemiological Model
and Weaver’s Simulator

In the Epidemiologicalmodel,a nonlineardifferentialequa-
tion is usedto measurethe virus populationdynamics[7]:�6��6  �!¡��W�O,�({�¢� (.�6�
where �W�� /� is the fraction of infectednodes,¡ is the birth rate
(the rateat which an infectedmachineinfectsothervulnerable
machines),and � is the deathrate. The solution to the above
equationis �W�' /�W� � " �O,;({£¤�� " bd�/,�(�£Z({� " �/9 V¢¥§¦�V%¨�©�ª (2)

where £A� ¨¦ and �%"$«a�W�' z�&�=�z� 2 �D¬�­$®
¯:°Q� ª�± � 28ª² � °² .

In fact, we can easily deducethe relationshipbetweenthe
birth rateand the scanningrate: ¡�� ² 2	 �1� .It is interestingthat when the Code Red v2 worm surged
in July of 2001, Staniford also independentlypresentedthe
samemodel to explain the RandomConstantSpread(or RCS)
theory of the CodeRed v2 worm [5]. Zou extendedthe Epi-
demiologicalmodelto thetwo-factorworm model,which takes
considerationof the human countermeasureand the worm’s
impacton Internettraffic and infrastructure[12].

ThedifferencesbetweentheAAWP modelandtheEpidemi-
ological modelare:

1) The Epidemiologicalmodel usesa continuoustime dif-
ferentialequation,while the AAWP model is basedon a
discretetime model.We believe that theAAWP modelis
moreaccurate.Becausein theAAWP model,a computer
cannotinfect other machinesbefore it is infectedcom-
pletely. But in the Epidemiologicalmodel, a computer
begins devoting itself to infecting other machineseven
though only a “small part” of it is infected.Therefore,
the speedthat the worm can achieve and the numberof
machinesthat canbe infectedare totally different.

2) The Epidemiologicalmodel neitherconsidersthe patch-
ing rate nor the time that it takes the worm to infect
a machine,while the AAWP model does. During the
propagationof the worm, it is possible nowadays to
promptlypatchthevulnerability on computers,assuming
a reasonablepatching rate. And different worms have
different infection abilities which are reflected by the
scanningrate (or the birth rate) and the time taken to
infect a machine.The time requiredto infect a machine
alwaysdependson thesizeof theworm’ copy, thedegree
of network congestion,the distancebetweensourceand
destination,and the vulnerability that the worm exploit.
From Figure 1(c), it can be seenthat the time to infect
a machineis an importantfactorfor the spreadof active
worms.

3) In theAAWP model,we considerthecasethat theworm
can infect the samedestinationat the sametime, while
the Epidemiologicalmodel ignoresthe case.In fact, it is
not uncommonfor a vulnerablemachineto behit by two
(or more)scansat the sametime.

Both models,however, try to get the expectednumberof
infected machines,given the size of the hitlist, total number
of vulnerable machines,scanning rate/birth rate and death
rate.The Epidemiologicalmodelcaneasilydeducethe closed
form and can be usedin topology orientation,suchas E-mail
wormsor peer-to-peerworms.In this paper, we focuson active
wormsthatselectdestinationsrandomlyor employ local subnet
scanning,suchasthe CodeRedandNimda worms.Hence,the
AAWP model, which is built on the “homogeneousmixing”
topology, is sufficient for our work.

Figure2(a)shows thecomparisonbetweenthesetwo models
with 10,000 vulnerable machines,a hitlist with 1 entry, a
birth rate of 5 /time tick and a death rate of 1 /time tick
(the parametersare from [7]). It takes the Epidemiological
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(a) All casesare for 10,000vulnerablemachines,a hitlist with 1
entry, a scanningrate of 2147500scans/timetick or a birth rate
of 5 /time tick anda deathrate of 1 /time tick. No patchingand
a time periodof 1 time tick to completeinfection for the AAWP
model.
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(b) All casesarefor 1,000,000vulnerablemachines,a hitlist with
10,000entriesand a scanningrate of 100 scans/second.A time
periodof 30 secondsto completeinfectionfor Weaver’s simulator
and the AAWP model.A deathrate of zero for both the AAWP
modelandtheEpidemiologicalmodel.No patchingfor theAAWP
model.

Fig. 2. Comparingthe AAWP Model to the Epidemiologicalmodel

(a) Measurementof the CodeRed v2 worm spreadusing real data
from CAIDA.
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(b) A simulationof thespreadof theCodeRedv2 worm (500,000
vulnerablemachines,startingon a singlemachine,a scanningrate
of 2 scans/second,a deathrateof 0.00002/second,a patchingrate
of 0.000002/second,and a time period of 1 secondto complete
infection).

Fig. 3. RealData from CAIDA [11] andSimulatedCodeRedv2 Like Worm from the AAWP Model

model about4 time ticks to enteran equilibrium stage,while
the AAWP model needsabout10 time ticks. Moreover, after
entering the equilibrium stage, the Epidemiological model
totally infects 8,000 vulnerablemachines(occupying ³6�¤´ of
all vulnerablemachines),while theAAWP modelinfectsabout

4,750vulnerablemachines(occupying µ�¶¤·�¸=´ of all vulnerable
machines).This shows that our model can better explain the
low level of worm prevalencein [9].

Weaver wrotea small,abstractsimulatorof a Warholworm’s
spread [10]. This simulator uses a 32-bit, 6-round variant



of RC5 to generateall permutationsand random numbers.
We only modified one condition of this simulator to fit the
assumptionwhich we presentedabove. That is, all “newly”
infected machineson a previous time tick will be activated
at the sametime on the current time tick, other than based
on differentclocks.Figure2(b) shows the growing of infected
nodeswith time for the two modelsand Weaver’s simulator,
which have the following parameters:a total of 1,000,000
vulnerablemachines,a hitlist of size10,000,a scanningrateof
100scans/second,a deathrateof zero,no patching,anda time
periodof 30 secondsto infect onemachine.This figure shows
that the AAWP modelandWeaver’s simulatorresultsoverlap.
While our modelandWeaver’s simulatortake about6 minutes
to infect ¹=��´ of the vulnerablemachines,the Epidemiological
modelonly takesabout5 minutes.

C. Simulatingthe CodeRedv2 Worm

On July 19th, 2001, the CodeRed v2 worm infectedmore
than359,000computersin lessthan14 hours[11]. This worm
spreadsby probing random IP addressesand infecting all
the hoststhat are vulnerableto the IIS exploit. CAIDA [13]
collected real data to measurethe spreadof the Code Red
v2 worm. The datawere collectedfrom two locations:one /8
network at UCSD andtwo /16 networks at LawrenceBerkeley
Laboratory(LBL). In thesedata,hostswere consideredto be
infectedif they sentTCPSYN packetsonport80 to nonexistent
hosts on thesenetworks. Figure 3(a) shows the number of
infectedhostsover time [11].

We supposethat there are 500,000vulnerablemachinesin
theInternet,theCodeRedv2 worm startson a singlemachine,
it performs2 scanspersecondandtakesonesecondto infect a
machine.Figure 3(b) shows the spreadof the simulatedCode
Red v2 like worm using our AAWP model,with a deathrate
of 0.00002/secondand a patchingrate of 0.000002/second.
Becauseof thepatchingrate,thecurvegoesdown slightly after
the worm spreadsfor oneday.

IV. APPLICATIONS OF THE AAWP MODEL

A good model can reflect the spreadof real worms and at
the sametime resolve many practicaltask. In this section,we
applytheAAWP modelto monitoring,detectinganddefending
againstthe spreadof active worms.

A. Monitoring the Spreadof ActiveWorms

How to monitor the spreadingrate of active worms is an
interesting task. It has come to our attention that CAIDA
collectedreal datafrom one/8 network at UCSD andtwo /16
networksatLBL [11]. Canthesecollecteddatareflecttheactual
propagationof the CodeRed v2 worm? Of coursethesedata
are only the lower bound of the spreadof the Code Red v2
worm. But, how muchdo they deviate from the reality?

Supposethat we can collect data from ���
	KVH±$�'�tºY»TºI�=�=�
addressesto estimatethe spreadof active worms. Here, / »
network is thespecialcaseof � �
	KVH± addresses.Theseaddresses
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Fig. 4. Collecting data from different addressspaces.All caseswere for
500,000vulnerablemachines,startingon a singlemachine,a scanningrateof
2 scans/second,a deathrate of 0.00002/second,a patchingrate of 0.000002
/second,anda time periodof 1 secondto completeinfection.

are consideredunusedIP addresses.When the scansfrom the
infected machinehit any addressin this space,it is counted
if and only if it hasnot beencountedbefore.The probability
that one scanhits this spaceis 	 �1�/¼=½	 ��� � �	 ½ . If active worms
cangenerate� scansper time tick, thenthe probability that an
uncountedinfectedmachineis observed on the next time tick
is ��¾À¿�ÁÂ�Ã,�(d�/,�( 	 ���O¼=½	
�1� �
2��Ä,$(Y�O,�( �	 ½ �
2 . Furthermore,if�À± RcR , and ��± RcR � , then��¾À¿�Á��I,�(��O,�( ,� ± � 2TÅ ,�({9 VJÆ� ½ Å �� ± (3)

Let Ç^� denotethe number of observed infected machines
at time tick �����&�È�=� . Before time tick �^bf, , there are� � (^Ç � uncountedinfectedmachines.Theeventsthatuncounted
infectedmachinesareobservedareindependentof oneanother.
Hence, the number of “newly” observed infected machines
satisfiesthe Binomial distribution. Then, at time tick �TbÉ,
the expectednumberof “newly” observed infected machines
is ��¾À¿�Á�Ê=�'� � (.Ç � � . Therefore,Ç$�LC � �!Ç$�¤bJ��¾À¿�Á ÊB�����)(�Ç^�8���I�/,�(A��¾À¿�ÁK�/Ç^��bJ��¾À¿�Á Ê
��� (4)

where, ����� and Ç^"��a� .
Basedon the AAWP model, we can evaluatethe effect of

thedifferentaddressspacesfrom which we collectdata.Figure
4 shows one examplein which we simulatethe CodeRed v2
worm. The curve where � 	/Ë addressesare monitoredis very
closeto the “real” worm propagationusing the AAWP model.
Thecurvewhere �6	 " addressesaremonitoredgrowsat a slower
ratethanthecurvewhere�6	/Ë addressesaremonitored,but at the
sametime is a muchbetterrepresentationthanthecurve where� �/Ì addressesaremonitored.Thecurve where ��Í addressesare
monitored gives the worst results,which can be understood
from Equation(3): when »��h��µ , �)¾À¿�Á Å � , then Ç^�DC � Å Ç^� ,
making the curve a horizontalline alongthe x-axis.



From the analysisabove, we concludethat monitoring ��	
Ë
addressesgives us a better representationof the propagation
of active worms.But an addressspacesmallerthan � 	 " is not
adequateto observe the actualspreadof active worms.

B. DetectionSpeed

Oneof the goalsof modelingthe spreadof active worms is
to beableto detectthem.Here,we presenta simpleanduseful
sensordetectionsystemandusethe AAWP model to evaluate
its performance.

1) Methodology: It is vital to detect active worms effec-
tively. In the nearfuture active worms may spreadacrossthe
whole Internetin a very shortperiodof time [10], making the
averagedetectiontime critical.

It is easyto figure out one simple detectionsystem.First,
put somesensorsin the Internet to monitor a set of unused
IP addresses.When the randomscansfrom active worms hit
theseIP addresses,they aredetectedby the sensors.However,
if theworms’ designersknow which unusedIP addressesmon-
itored by sensors,they could launchDoS attacksby sending
many packets to the sensors,causingthem to generatemany
falsealarms.Therefore,sensorsmust have the intelligenceto
distinguishbetweenthe scansfrom active wormsandDoS at-
tacks,which requiresa morecomplex sensordetectionsystem.
However, this challengeis beyond the scopeof this paper.

For this simpledetectionsystem,someinterestingquestions
needto be answered:� How many unusedIP addressesshouldbe monitoredby

sensorsin order to detectactive wormsrapidly?� Given the numberof IP addressesmonitored,what is the
averagetime requiredto detectworms?

2) Performanceof the SensorDetectionSystem:The per-
formanceof the sensordetectionsystemdependsmainly on
the detectiontime. An idealdetectionsystemshouldbeableto
detectactive wormsat the beginning of their propagation.We
usetheaveragedetectiontime asour performanceindicatorfor
the sensordetectionsystem.Let Î ¨ denotethe detectiontime.
Below, we will deducethe relationshipbetweenthe average
detectiontime andthe numberof unusedIP addressesthat are
monitored.

Supposethat thereare Ï unusedIP addressesmonitoredby
sensors.For a singlescan,the probability that it is detectedby
sensorsis Ð	 �1� . Thus, for

F
scans,the probability that at least

onescanis detectedby sensorsis ,�(��O,�(ÑÐ	
��� �/P .
Let ÒA� indicate the probability that a worm is detectedat

time tick �Â�'��ºÉ�Aºh[�ba,B� , where Ò�"��f� . Also note that
at time tick [ thereareeitherno morevulnerablemachinesor
the active wormscannotincreasethe total numberof infected
machines.Here,we assumethat even if sensorsfail to detect
active worms, people will finally detect them, which meansÒ ` C � �g, . Since � � V � infectedmachinescan generate�>� � V �
scans, Ò � �I,�(��O,�( Ï� �
	 � 243�5 ¼�Ó (5)

where ,�º��Zº<[ . Then the expectedvalue of detectiontimeÎ ¨ is: ?A@>Î ¨ G � ` C �ÔP�Õ � F Ê=* PQV �Ö±-Õ " �/,;({Ò ± �47)Ê+Ò P (6)

Basedon the above formula and the AAWP model, Figure
5(a)shows the relationshipbetweenthe averagedetectiontime
and the number of unusedIP addressesthat are monitored
by sensorswhen the active worms spreadwith varying hitlist
sizes.Fromthis figure,we know that in thecaseof a simulated
CodeRedv2 like worm (sizeof hitlist = 1), whenmonitoring��	
Ë addresses,the averagedetectiontime is only about two
minutes;whenmonitoring � �OÌ addresses,the averagedetection
time increasesup to abouttwo hours.If we want to detectthis
worm in onehour, morethan � � Í unusedIP addressesmustbe
monitoredby sensors.On the other hand,althoughthe worm
with a larger hitlist spreadsfaster, it can alsobe detectedin a
shorterperiod of time. For example,when monitoring � �OÌ IP
addresses,we needabouttwo hoursto detecta worm starting
on a single machine,while we need36 minutes to detecta
worm with a hitlist of 10 machinesand only 5 minutes to
detecta worm with a hitlist of 100 machines.Table II shows
somesampleresultsin Figure5(a).

This simpledetectionsystemcanbeeasilyextendedto more
complex systems.For example,to reducethe numberof false
alarms,thesensorsshouldreceive severalscansduringa period
of one time tick beforethe systemcanactuallydetectworms.
Set × 3 to be the least numberof scansreceived by a sensor
to generatean alarm during the period of one time tick. A
larger × 3 valuegenerateslessfalsealarms.The probability of
detection,however, is alsoreduced.Basedon the definition of× 3 , the Equation(5) becomes

Ò � �I,�(]ØÀÙ V �Ô ±-Õ " �1�>��� V � �KÚ»OÚÛ�1�>��� V � (.»1�KÚ �/,�( Ï� �
	 � 243�5 ¼�Ó VH± � Ï� �
	 � ±
where ,YºÜ�]ºÝ[ . Figure 5(b) shows the effect of × 3 on
the sensordetectionsystem.Even though a large × 3 value
can reducethe numberof falsealarms,it reducesthe overall
performanceof the system. So reliability and performance
are a tradeoff. Also, if a systemwith a large × 3 value does
not monitor enoughaddresses,it cannotcompletelydetectthe
worms. For example,when × 3 �Þ¸ and the addressesspace
monitoredis lessthan � �
� , thesystemcannotdetectthe worms
even if the whole Internethasbeeninfected.

C. Effectivenessof the DefenseSystem

Another goal of modelingthe spreadof active worms is to
defendagainstactiveworms.Here,weextendtheAAWPmodel
to analyzethe LaBreatool, which is put forward by Liston to
slow down or even stop the spreadof active worms[14].

1) LaBrea: LaBreais a tool that takes over unusedIP ad-
dressesonanetwork andcreates“virtual machines”thatanswer
to connectionrequests[15]. LaBrearepliesto thoseconnection
requestsin sucha way thatcausesthemachineat theotherend
to get “stuck”. One can intentionally hold a connectionopen
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Fig. 5. Performanceof sensordetectionsystem.All casesare for 500,000vulnerablemachines,a scanningrate of 2 scans/second,a deathrate of 0.00002
/second,a patchingrateof 0.000002/second,anda time periodof 1 secondto completeinfection.

TABLE II

AVERAGE DETECTION T IME WITH HI TL ISTS OF DI FFERENT SI ZES AND DI FFERENT NUMBERS OF UNUSED IP ADDRESSES MONITORED BY SENSORS

(SECOND)

numberof IP addressesmonitored � � 	 � � Ë � �/Ì � � Í �6	 " �6	
	 ��	
Ë
sizeof hitlist = 1 20120.00 13800.00 8241.50 4021.90 1530.60 466.28 125.00
sizeof hitlist =10 10007.00 5267.30 2184.70 711.70 197.14 51.14 13.25
sizeof hitlist =100 3030.40 1065.70 308.20 81.06 20.90 5.63 1.84

for aslong ashe/shewishes.That is, the LaBreatool monitors
all traffic destinedfor someunusedIP addresses.When one
scanhits theseIP addresses(“virtual machines”),the LaBrea
tool will reply and establisha connectionwith the infected
machine.This connectioncan last for a very long time.

Beforewe apply theLaBreatool extensively, we shouldfirst
attemptto answeronequestion:How many unusedIP addresses
shouldbemonitoredby theLaBreatool to defendagainstactive
wormseffectively?

2) Performanceof theLaBreaTool DefenseSystem:Assume
thattheLaBreatool is installedin theInternetandis monitoringÏ unusedIP addresses.Supposethatnow thereare

F
scansfrom

infectedmachines,beginningto searchtheInternet.Becausethe
LaBreatool cantrap the scanningthreads,after one time tick,
therewill be Ð	 ��� F scanningthreadstrapped.That is, therewill
only be �O,�( Ð	 ��� � F scanningthreadsleft.

Let
F � and 9B� denotethe averagenumberof scansand the

number of newly infected machinesat time tick �t���.�����
respectively. Takinginto considerationthat theLaBreatool will
affect the total numberof scans,we extendEquation(1) to� � � �O,�(#�H� � �F �DC � � �O,�(.�Z(#�H� F �
�O,�( Ï� �
	 �¢b��Q9Q�9 �DC � � ��� � (.� � �K*L,�(��O,;( ,� �
	 � P�5Dß Ó 7

���DC � � �O,�(.�Z(#�H�4���Hb�9B�DC �
where ���a� , F " �Y� and 9 " �d� " �<� . The recursionprocess
will stop when thereare no more vulnerablemachinesleft or
when the worm cannotincreasethe total numberof infected
machines.It shouldbe notedthat if ÏS�!� , the setof formulae
outlinedabove turn out to be the sameasEquation(1).

Figure 6 shows a simulationof a CodeRed v2 like worm
spreading.WhentheLaBreatool monitorslessthan � �OÌ unused
IP addresses,the worm spreadis only slightly affected. But
when more than � � Í unusedIP addressesare monitored,the
LaBrea tool is able to effectively defend against the worm
propagation.We canalsoseethat the total numberof infected
machinesstopsincreasingbeforeall the vulnerablemachines
areactually infectedwhenthe LaBreamonitorsmorethan � � Í
unusedIP addresses.

Therefore,the LaBrea tool can really slow down or stop
the spreadof active worms. However, at least � � Í unusedIP
addressesareneededto defendagainstactivewormseffectively.
It might not be easyto persuademany network administrators
to install the LaBrea.If we canget oneunusedclassA subnet
(an addressspaceof �6	/Ë addresses),which is not publicly
advertised,andinstall theLaBreatool to monitorthetraffic into
this subnet,this seemsto be a good start for fighting against
active worms.
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Fig. 6. Performanceof the LaBreatool detectionsystem.All casesare for
500,000vulnerablemachines,startingon a singlemachine,a scanningrateof
2 scans/second,a deathrate of 0.00002/second,a patchingrate of 0.000002
/second,anda time periodof 1 secondto completeinfection.

V. MODELING THE SPREAD OF ACTIVE WORMS THAT

EMPLOY LOCAL SUBNET SCANNING

Insteadof simply selectingdestinationsat random,the Code
Red II and the Nimda worms preferentiallysearchfor targets
on the “local” addressspace[1], [3]. In this part, we extend
theAAWP to theLocal AAWP (LAAWP) modelto understand
the characteristicsof the spreadof active worms that employ
local subnetscanning.

A. LAAWP Model

As the AAWP model,the LAAWP modelusesdeterministic
approximation.We focuson theactive worms’ scanningpolicy
andignoreboththedeathrateandthepatchingrateto simplify
the model.The function of firewalls is not considered,either.

Now supposethat a worm scansthe Internetas follows:� � " of the time, a randomaddresswill be chosen� � � of the time, an addresswith the samefirst octet will
be chosen� � 	 of the time, an addresswith the samefirst two octets
will be chosen

where,��"�b$� � b$� 	 ��, . We canregardrandomscanningasone
specialcaseof local subnetscanning,when ��"��Þ, , � � �É� ,
and � 	 �&� .

Assumethat the vulnerablemachinesareevenly distributed
in every subnetwhich is identifiedby the first two octets.The
subnetscanbeclassifiedinto threedifferentkindsof networks:� A “special” subnet (denotedby Subnet type 1), which

alwayshasa larger hitlist size.� �6Í (�, subnetshaving the samefirst octetasthe “special”
subnet(denotedby Subnettype 2).� Other � �/Ì (]��Í subnets(denotedby Subnettype 3).

Different kinds of networks have hitlists of different sizes.In
thesametypeof subnet,all networkshave thesamehitlist size.

Let � � , � 	 , and � � denotethe sizeof the hitlist in Subnettype
1, 2, and3, respectively.

Let Á � , Á 	 , and Á � denotethe averagenumberof infected
machinesin Subnet type 1, 2, and 3, respectively. And letF � , F 	 , and

F � denotethe averagenumber of scanshitting
Subnettype 1, 2, and3, respectively. Then at sometime tick,
the relationshipbetweenthe averagenumberof scanshitting
Subnettype �#�'���à,6������¿B¾á��� and the averagenumber of
infectedmachinesin differentSubnetsisF � � � 	 �BÁ � bt� � �=* Á � b&�1� Í (�,B�MÊQÁ 	 7 E � Í b� " ��* Á � b!��� Í (�,Q�MÊBÁ 	 b&�1� �/Ì (]� Í �zÊQÁ � 7 E � �OÌF 	 � � 	 �BÁ 	 bt� � �=* Á � b&�1� Í (�,B�MÊQÁ 	 7 E � Í b� " ��* Á � b!��� Í (�,Q�MÊBÁ 	 b&�1� �/Ì (]� Í �zÊQÁ � 7 E � �OÌF � � � 	 �BÁ � bt� � �QÁ � b�)"Q��* Á � b!��� Í (�,Q�MÊBÁ 	 b&�1� �/Ì (]� Í �zÊQÁ � 7 E � �OÌ
For

F � ( �c�Ã,=�
���X¿B¾�� ), the first item is the averagenumber
of scanscomingfrom the local subnet(with the samefirst two
octets).Theseconditem is theaveragenumberof scanscoming
from neighboringsubnets(with the samefirst octet).And the
last item is the averagenumberof scanscoming from global
subnets.

In every subnetthe scanswill randomly hit targets,which
can be modeledby the AAWP model. The total numberof
machineswill be � �/Ì , insteadof ���
	 , and the total numberof
scanswill be

F � . Thus,Equation(1) becomes

Á�â� �&Á � bgã �� �/Ì (]Á ��äÉå ,�(æã%,�( ,� �OÌ ä P 5�ç (7)

where,� ��,6�����M¿B¾$� and Á â� is thenumberof infectedmachines
on the next time tick. The recursionprocesswill stop when
thereareno morevulnerablemachinesleft. At sometime tick,
the total numberof infectedmachineswill be Á � bd����Í$(a,Q�zÊÁ 	 b&�1� �OÌ (]��ÍQ�MÊQÁ � .

Basedon theabove formulae,we canunderstandthecharac-
teristicsof local subnetscanningand the effect of the hitlist’s
distribution. Different �)"6�M� � �M� 	 and � � �T� 	 �;� � cangenerate
differentpatternsfor the spreadof worms.

Four casesareconsideredhere:

1) Randomscanning(��"��è, , � � �é� , � 	 �ê� ): In this
case

F � � F 	 � F � � 3 Ð U�ë ­4ìy®
¯ ª ® ª'í�± � 3 ¯Q­/î ª ­ ¨ U í î4°>� 3 ­ 2	 Ó'ï ,
which meansthe distribution of the hitlist cannoteffect
the spreadof active worms.

2) A hitlist with an even distribution ( � � �d� 	 �d� � ): This
gives

F � � F 	 � F � �\�BÁ � �g�QÁ 	 �g�BÁ � . Local subnet
scanning,therefore,cannotchangethe spreadof active
worms in this case.

3) Similar to the Nimda worm (� " �à��·��6¸ , � � �ð��· �=¸ ,� 	 �ñ��·�¸ ): In this case,we selectdifferent distributions
of the hitlist, just as in Figure 7(a). Evenly distributed
hitlistsgive thebestperformance,while puttingall hitlists
togetherin one“special” subnet( � � �I,Q���W� 	 �d� � �!� )
gives us the worst performance.This figure shows that
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Fig. 7. ModelingtheSpreadof Active WormsthatEmploy Local SubnetScanning(All casesarefor 1,000,000vulnerablemachineswhich areevenly distributed
to every subnet,a scanningrateof 100 scans/timetick anda time periodof 1 time tick to completeinfection.)

the hitlist’s distribution can affect the spreadof active
worms.

4) Localsubnetscanningwith ahitlist of unevendistribution
(fix � � �T� 	 ��� � andlet � � R � 	 R � � ): This standsfor a
hitlist of unevendistribution anda centralizationof more
hitlist machinesin the “special” subnet. Surprisingly,
however, Figure7(b) shows that in this caselocal subnet
scanningslows down the propagationof active worms.
We will further discusswhy worm designersselectthis
scanningtechniquein the next section.

From the four casesabove, we see that for local subnet
scanningthe hitlist’s distribution can influencethe spreadof
active worms, while the even distribution gives us the best
performance.In additionwhenthe hitlist is moreconcentrated
in the “special” subnet,local subnetscanningslows down the
spreadof active worms.

B. Discussionof the Local SubnetScanningPolicy

The LAAWP model implies that local subnetscanningmay
slow down thespreadof activeworms.Why do thedesignersof
active wormsusethis technique?Thereare two main reasons:

1) Firewalls canprotectvulnerablemachinesbehindit. But
local subnetscanningallows a single copy of a worm
runningbehindthe firewall to rapidly infect all the other
local vulnerablemachines.

2) Onesubnetalwaysbelongsto a company or organization
and has a lot of similar machines.Therefore,it can be
expectedthat if a machinehasa securityhole, thenthere
is a high probability that many other machinesin the
samenetwork have the samesecurityhole.

VI . CONCLUSIONS

In this paperwe presentthe AAWP model to analyzethe
characteristicsof the spreadof active worms.Even thoughthe
AAWP model also useddeterministicapproximation,it gives
more realistic resultswhen comparedto the Epidemiological
model.The simulationresultsshow that our model can better
explain the “mystery” in [9]. TheAAWP modelcanbeusedto
simulatetheCodeRedv2 worm with thefollowing parameters:
500,000 vulnerablemachines,starting on a single machine,
a scanningrate of 2 scans/second,a death rate of 0.00002
/second,a patchingrateof 0.000002/second,anda time period
of 1 secondto completeinfection.

Taking the Code Red v2 worm as an example, we apply
our model to answerthreedifferent questions.First, from our
model we assertthat an addressspaceof � 	/Ë IP addressesis
large enoughto obtainrealisticresults,while an addressspace
smaller than ��	 " addressesis not large enoughto effectively
obtain any realistic information about the spreadof worms.
Second,the AAWP model is usedto evaluatethe performance
of a simplesensordetectionsystem.More than � � Í unusedIP
addressesare neededfor the sensorsto detectthe CodeRed
v2 like worm in one hour. Worms with a larger hitlist can be
detectedin a shorterperiod of time, even thoughthey spread
at a much fasterrate. This simple sensordetectionsystemis
the first steptowardsa practicaldetectionsystemthat detects
activewormsthroughscanningfrequenciesor sourceIP address
distributions.We plan to useour modelto evaluatethis typeof
detectionsystem.Finally, the AAWP modelis usedto evaluate
the performanceof the LaBreatool defensesystem.Similarly,
an addressspaceof more than � � Í unusedIP addressesis
neededby LaBreato defendagainsttheCodeRedv2 likeworm



effectively. We planto applyour modelto assessotherpublicly
availabledefensesystemsandcomparetherelativeperformance
of differentdefensesystems.

As part of our ongoingwork, we extend the AAWP model
to theLAAWP modelto understandthespreadof active worms
using local subnetscanning.The distribution of the hitlist can
affect the local subnetscanningpolicy. In particular, a worm
using an evenly distributed hitlist spreadsat the fastestrate.
When the hitlist is concentratedin some subnet,the spread
of active worms is slowed down. In the LAAWP model, the
vulnerablemachinesare assumedto be evenly distributed in
every subnet.We plan to studythe effect of the distribution of
vulnerablemachinesin order to get moreaccurateresults.
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